

home.cern

TO WHOM IT MAY CONCERN

This is to certify that:

Georgios Voulgarakis

attended the Thematic CERN School of Computing 2017 held at MEDILS in
Split, Croatia - organised in collaboration with the University of Split - from 4-10th June
2017.

The academic programme of the School consisted of 12 hours of lectures (plus 2 special
guest lectures), and 10 hours of exercises. A summary of the syllabus is overleaf.

The School website can be found at https://indico.cern.ch/event/591480/

Sebastian Lopienski
Director

CERN School of Computing

CERN School of Computing
CERN – IT Department
CH-1211 Genève 23
Switzerland

Georgios Voulgarakis
CERN

Email: computing.school@cern.ch

Our reference: tCSC2017-certif Geneva, 13 June 2017

2

Thematic CERN School of Computing 2017

Efficient Parallel Processing of Future Scientific Data

Introduction	

• Future scientific data processing: challenges in HEP and other sciences,
commonalities and differences.

• The prime role of software in modern big science.
• Parallelism and asynchronism: computation and I/O.
• Evolution of hardware and platforms, consequences on data analysis procedures

and tools.

Track 1: Technologies and Platforms
Introduction	to	Efficient	Computing	

• The evolution of computing hardware and what it means in practice
• The seven dimensions of performance
• Controlling and benchmarking your computer and software
• Software that scales with the hardware
• Advanced performance tuning in hardware

Intermediate	Concepts	in	Efficient	Computing	
• Memory architectures, hardware caching and NUMA
• Scaling out: Big Data – Big Hardware
• The role of compilers and VMs
• A brief look at accelerators and heterogeneity

Data	Oriented	Design	
• Hardware vectorization in detail – theory vs. practice
• Software design for vectorization and smooth data flow
• How can compilers and other tools help?

Summary	and	Future	Technologies	Overview	
• Teaching program summary and wrap-up
• Next-generation memory technologies and interconnect
• Rack-sized datacenters and future computing evolution
• Software technologies – forecasts

Track 2: Programming for concurrency and correctness
Scientific	software	programming:	a	modern	approach	

• Introduction: Amdahl's law, Performance and correctness of codebases
• Modern C++: new constructs, their advantages
• Exploit modern architectures using Python
• Near the hardware: the role of compilers
• Understanding the differences and commonalities of data structures, metrics for

their classification, concrete examples
Expressing	Parallelism	Pragmatically	

• Trivial asynchronous execution
• Task and data decomposition
• Threads and the thread pool model
• In depth comparison of threads and processes, guidelines to choose the best

option

3

Protection	of	Resources	and	Thread	Safety	
• The problem of synchronization
• Useful design principles
• Replication, atomics, transactions and locks
• Lock-free programming techniques
• Functional programming style and elements of map-reduce
• Third party libraries and high level solutions

Ensure	Correctness	of	a	Parallel	Scientific	Application	
• Correctness and reproducibility of a scientific result
• Stability of results and testing: regression, physics performance, tradeoffs
• Enforce avoiding thread unsafe constructs: focus on static analysis
• Algorithms for detecting synchronisation pathologies: focus on the DRD and

Helgrind tools
• Elements of the GNU debugger: introduction and specific usage in the

multithreaded case

Track 3: Effective I/O for Scientific Applications
Structuring	data	for	efficient	I/O	

• Pro/cons of row-column and mixed formats
• compression and its efficiency dependencies on variable types, impact of data

format
• Data addressing : limitation of hierarchical approach, usage of flat namespaces
• Stateful vs stateless interfaces for namespaces and I/O

Many	ways	to	store	data	
• Storage devices and their specificities
• Data federation
• Parallelizing files storage
• Introduction to the Map/Reduce pattern

Preserving	Data	
• Risks of data loss and corruption
• Data consistency (checksumming)
• Data safety (redundancy, parity, erasure coding)

Key	Ingredients	to	achieve	effective	I/O	
• Asynchronous I/O
• I/O optimizations
• Caching
• Influence of data structures on I/O efficiency

